

Process Configuration for CMM Level 0

Hüseyin Angay

Karabash Ltd.

Member of the Appropriate Process Movement

http://www.aptprocess.com

Abstract
Capability Maturity Model introduces the five levels of maturity for an
organisation’s software development processes. These are Levels 1 to
5. They have, however, left out Level 0. They are probably afraid that
somebody might actually try to achieve it if they discovered that it was
there. Of course, we are not SEI. So, for those who would like to go
where even fools fear to tread, here is an explanation of what
constitutes CMM Level 0. For the really foolhardy, we even added
some techniques for getting there.

Copyright Note
This document resides online at www.aptprocess.com and has been
authored by Hüseyin Angay of Karabash Ltd. and of the Appropriate
Process Movement. It may be copied freely in part or in whole, with
the restriction that anywhere using a copy of more than three
paragraphs must include as reference the web address of its origin, as
given above.

Sensible Note
In case you’ve had a long day and all this appears to be genuine
advice from a professional engineer, please get some sleep and read
this piece in the morning, when you will feel better and less gullible.

We would love to hear from you if you have more tips or if you would
like to correct any point.

We have no connection with the manufacturers, distributors or the
retailers of Wonder Millennium Potato Peelers. If you would like one,
the Liverpool Lime Street station is the place to go.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

1

http://www.aptprocess.com/

Process Configuration for CMM Level 0
Process configuration is all about challenge. You set the next
challenge; you achieve it; you move on. If you are the selfish type,
you can treat process configuration as a gravy train, place yourself in
the conductor's seat and have a job for life, steering your organisation
through the journey that never ends. Or, you can take the selfless
route and go in a blaze of glory, having achieved the ultimate
challenge – that of reaching CMM Level 0 accreditation.

Let's face it. Everybody's at CMM Level 2, at least. Ask anybody in the
industry, and they'll tell you that they are doing the same things over
and over again – this may not be your definition of repeatability, but
it's certainly mine. CMM Level 3 is no challenge at all, either. Ask any
organisation that issued the memo saying that they will reach CMM
Level 3 by Christmas and managed to do it – you will not be short of
candidates. Having reached Level 3, it's no great shakes to move up
the ladder to Levels 4 and 5. You just issue more memos, one to get
to Level 4 by Christmas in two years' time and another to do level 5 in
four years' time – by Christmas again, naturally1.

On the other hand, CMM Level 0 is the Fight Club of the software
development world. It's that point where you have sunk so low that
you've actually come full circle and became more than superhuman –
well, ok, super-organisation. So, how about it? Have you got the guts?

What is CMM Level 0, then?
Well, Level 2 is Repeatable. Level 3, Defined. Level 4, Managed. And
Level 5, Optimised.
If you are none of these, you are Level 1.
So, how do you get to Level 0 in the first place, since if you do this
stuff you are at some Level 2-5, and if you aren't doing any of it, you
are at Level 1. And presumably, if you manage to do all that AND also
manage to implement the air traffic control system for Europe, say,
with a crew of six (one of whom is solely dedicated to making the teas
and fetching the coats), you must be at Level 20 or something. But
Level 0?

1 I know a lot of companies announce their exec bonuses at Christmas, but this is
bound to be just coincidence.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

2

Think of Level 0 as the platform 9¾ of the Process Configuration gravy
train station. The difference between Levels 1 and 0, in a nutshell, is
one of intention and direction. Organisations are at Level 1, because
they fail to achieve the qualities that make their processes repeatable,
defined, managed and optimised. To get to Level 0, they must not fail
to do these things; they must manage not to do any of these things
even when everything appears to be in place for them to be at Level 5.
And that subtle difference, dear reader, is the quantum gap between
the failed process configuration engineer and the ultimate process
configuration engineer. The former will get nothing but contempt,
whereas the latter will get the recognition that infamy brings. The
choice is yours:

You can do your best and still fail to lift your organisation
above Level 1 and be a contemptible failure.
You can take your organisation to some higher level and
become moderately or even very successful.
Or, you can take your organisation down to Level 0 and
become (in)famous.

Do you feel big enough for the challenge?

Assuming that you do, here is how you make a process:

• unrepeatable even with the best of intentions;
• undefined, even though it looks well defined;
• unmanageable even by the best managers;
• and so far away from the optimum that it's not merely sub-

optimal but infra-optimal.

CMM Level 2 – Repeating the unrepeatable
Repeatability is based on the assumption that if you repeat your
successful practices, you should consistently do better than re-
inventing the wheel every time. This is a tough one. It is quite
inevitable that despite your best efforts, there will be some individuals,
or, perish the thought, groups of individuals who will want to repeat
the odd practice that helped them get things done. You can reduce this
tendency by making sure that they have no chance of getting things
done in the first place, so that they can't learn anything from it, but
they will occasionally get things right by pure fluke if for no other
reason. The strategy for this is quite involved. You must convince
them that this is an isolated fluke so that they won't expect it to work
again. If they want to try it again, make sure that whatever they do
will contradict the defined process, so that they can never do it. If they

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

3

are really sanguine about it, insist that they must thoroughly
document how they did it, at which point either they will give up or
they will do such a good job of documenting it that it will become part
of the process monolith documentation. Either way, we won't have a
practice to follow or we will have it so well documented that we will
never be able to follow it – especially if we mandate that it fits
perfectly well with the documentation (see Level 3 for this).

As to the ones who learn from their mistakes, they are obviously smart
so you'd think that would make them harder to crack. Of course not!
The smarter they are, the harder they fall. Make sure that they
thoroughly document how they did things. While they are busy doing
that, make their previous project turn out to be a great success and
have them lionised. Nobody's going to turn round and say, "Oh, by the
way, you know that great success story that you rewarded me for so
handsomely? Well, it was a great failure actually." In fact, it's likely
that they'll actually believe that it was a great success: Learning from
your mistakes is great, but not making them in the first place is even
better. We have excellent denial mechanisms to bolster up our self
esteem. When other people start to stroke our egos, these
mechanisms go into overdrive and create an unreality field around us,
which affects us and all those involved. This is how myths are made.
At this point, you can take the documented mistakes, which now turn
out to have been the best decisions for the situation, and make them
part of your process. Two birds with one stone: you've enriched the
process with even more problems and quietened the people who might
have taught everybody else how to avoid the pitfalls. If people follow
the same advice and fail (as they are bound to), they obviously
haven't followed it properly, or they would have done well just like the
original inventor of the idea.

If you thought learning from mistakes was all there was to it, it's not
surprising that you're reading this, instead of getting on with real
work. To completely miss the Level 1, you also need to address the
requirements management issues.

Now, we know that more is better with metrics. With matrices, there is
only more – less doesn't make it even into the runners-up roster.
When you think requirements, you must think matrices. You should
have matrices of related requirements, matrices of requirements
priorities, matrices of requirements and features, matrices for
everything. And to have matrices, you must have traceability. Some

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

4

people believe that the aim of traceability is to know why some
software features are there – you look up the requirements attached
to the feature and you have some idea. If that were really the case,
can you explain why nobody's bothering to do it right? No, the real aim
is to be able to supply the matrices with the cross-references that they
need. Matrices are hungry beasts. You make one up and it looks
sparse. So, you supply the cross-references to make it less sparse, but
then, while looking for cross-references, you end up finding even more
rows and columns and you've got a sparse matrix again. The more you
feed them, the more they grow and the hungrier they get. And that's
exactly what we want.

If you want a fat beast of a requirements repository, encourage as
many types of interdependencies as you can. Then make sure that
everyone finds as many of those as possible. Invent statistics that give
the optimum quantity of connectedness for systems2, then make
everybody try to get as close to that number as they can. Penalise
those who exceed it or come under it. Then, just as they start to think
they know what’s going on, crank up the traceability targets yet
another notch: Introduce audit trails for everything people do, from
compiling code to making changes to the size of the buttons on the
screen. Just as people start to groan under weight of the paper,
introduce a paperless audit trail by integrating configuration
management with some kind of work tracking tool. This may appear
more efficient at first, but when you notice how many policy changes
you can make on the fly without anyone noticing, you will appreciate
the value of an automated tracking system. Then, produce statistics –
and matrices, of course. Most non-IT people's eyes glaze over when
you put metrics about LOCs, function points, etc. in front them. Start
giving them metrics about requirements and system features, though,
and they'll start believing that they understand it all. Of course they
don't. But the vocabulary appears to make sense, the words appear to
be in real English instead of some techie perversion of it, so it must be
sensible. So, their eyes will still glaze over, but this time, with the
peaceful sleep of recognition and not with the panicked shutdown of
the non-numerate. These semi-recognisable metrics are also a good
way of gaining a foothold for the even less productive but even more

2 If you aren't numerically inclined or if you just can't be bothered, look it up on the
internet. Somebody's bound to have come up with the figures. The world is full of
crackpots – we have to give them a purpose in life or they'll go inventing cars
running on water or something and destabilise the whole economy.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

5

useful (for us, anyway) metrics of the pseudo-technical nature, which
will be explored in Level 4.

How do we know we are doing things right over and over again? The
easy method, of course, is to say, at the end of the project, "The
system ended up on the users' desk, so it worked." Life is not that
easy, however. There is always some stuck-up user who will say
something along the lines of "Thanks, but I was expecting this to be
delivered sometime in the last century." This is where project planning
comes in. It would be wholly inappropriate to disappoint the users by
delivering something on time or on budget, but even more
inappropriate for them to be able to prove that you have missed these
targets.

So, introduce project planning early in the project – preferably, before
it even starts. Have detailed plans, where every single task is
identified. Provide estimates for each task, to the nearest hour, if
possible. We don't want to appear to be tracking every time someone
sneezes, but we want to do it, all the same. Underplanning is the
deadliest sin that an organisation could commit. We will be tracking
the project progress against estimates (and configuration management
will help us work out even how long people spend over their work) and
we will be holding the managers responsible for failing to stick to these
estimates. Soon, they will all be trying to make sure that every one of
the tiniest tasks in their projects are identified up-front and accounted
for. Since the plans are made early enough in the project, there is
naturally no way of getting the figures right. But the cure is simple and
every manager will soon discover that they can just overestimate
everything to make up for the unforeseen tasks. This is when you
spring your trap: Chart the budgets and the projects for the next few
years, which will no doubt show an astronomic potential overspend.
Wouldn't it be wiser to subcontract everything, if this were the case?
Torn between the desire to inflate the figures and the fear of being
outsourced, the managers are now putty in your hands.

A threat never realised is a threat soon forgotten. So, you will need
some subcontracting activity just to keep people's minds focused. But
subcontractors can be a problem. They are quite likely to bring in ideas
alien to your process, such as iteration. They also tend to use
dangerous words like ‘agile’. Counter with baselines and lawsuits. One
sure trick is to assign the wimpiest and most incompetent manager in
the company to the management of the subcontractors. Then, put the
manager under excessive pressure and imply that they are being led

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

6

by the supplier instead of leading them. The combination of timidity
and the desire to be assertive should produce uncontrolled aggression.
The manager will swing between letting the suppliers get away with
blue murder and shouting at them for small failures. Hammer the
suppliers for their failures, to the extent that they will lose money with
every single job that they do for you. Sooner or later, all the reputable
suppliers will be avoiding your calls for tender and you will end up with
proposals only from the bottom-of-the-barrel lot that would tender for
anything out of sheer desperation. Perfect. These guys will eat out of
your hand.

Quality is such an important concept that it needs to be repeated to be
appreciated.
Quality.
And again.
Quality.
Louder.
QUALITY.

For the quality assurance team, select the weaseliest characters in the
organisation and import more if you can't find enough of them. They
are easy to spot. Find out who manages to go on training courses
more often than others but always avoids the events in the crummier
hotels; who get their hands on corporate hospitality tickets for
sporting events far too regularly; who always cluster around the coffee
machine talking very quietly. Make this the cushiest job in the
company – some good strategies: get them the airiest office space,
new machines, regular training in posh locations and make them the
only people eligible for overtime remuneration in the company.
Remember, quality is far too important to leave in the hands of
disgruntled employees; you can't have failed to notice that the
countries who pay their policemen the least also appear to have high
levels of crime and corruption. Spread the rumour that there will be
more openings if the team is not up to the task. That way, nobody will
be able to criticise the team openly because they will be hoping to be
in it sometime soon. Except that the quality team will not be too keen
to lose or dilute the perks of the cushiest job in the organisation. So,
they will make sure that all the contenders for the job look far too
incompetent to be in the cream team. This should be relatively easy,
since they will be making the criteria for quality and they will be
policing it. This is a great way of creating tension without anyone

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

7

being able to complain. What are they going to say? "We don't want to
produce deliverables of sufficient quality"?

Level 2 is thus conquered. Introduce these practices and your
organisation is guaranteed never to reach Level 2, even though it will
think it is already there.

CMM Level 3 – Defining the indefinable
Badly defining a process is easy. I'm a lousy magician – even a three
year old can see that I hide the cards under my belt behind my back;
even then, I end up pulling out the wrong one, anyway. It's much
harder to appear to be a lousy magician – you know, the kind who
saws the assistant in half and all this blood starts pouring out of the
box, and he goes all white but then the assistant steps out of the box,
unharmed. The archmagician, of course, is the one who really kills the
assistant, but still manages to make her look alive.

Now, let's mull over this for a moment. How can we kill a process and
still make it look alive? Well, it's easy to do in principle but hard to
execute: We document it to death.

Now, the military are the masters of this game. They have manuals to
cover every eventuality, from someone shooting himself in the toe to
the outbreak of global nuclear war. Then, they learn the manuals. By
heart. Then, they practice it and then practice it even more until the
opportunity arises to do it for real. But, your average software person
isn't like that. In fact, they'd rather not have any manuals at all. We
could blame it on a liberal upbringing by misguided parents or we
could be thankful that they are like that, because that's our key to
process misdefinition. It doesn't matter how badly your process fits
together as long as it appears to fit together. The software developers
won't follow it anyway – everybody knows they won't. So, who can
blame you if they don't follow yours, either?

Remember, processes are like movies: The important part is not
reality; it's verisimilitude. If it appears real, that's good enough. In
fact, just as the epic on the cinema screen looks more real than actual
reality, processes look more real on the computer screen. So, produce
massive tomes of process manuals and make sure that it all appears
to fit together. Then drop them in front of the development staff and
make them stick to the process. This is where the fun starts, because

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

8

their natural liberal tendencies will ensure that they won't follow the
manuals. They can't help it. They'll do their own thing and they will
fail, the poor chaotic creatures. But you've got your backside covered,
because even if they followed the process, it wouldn't work anyway –
except, you could still blame them with not following the process and
everybody would believe you. Perfect.

So, who defines these processes and who documents them?

Here is the clever part. In order to distance you from any blame if
things go not just conveniently wrong but really wrong, you delegate
the work to the Process Engineering Team. This has the added
advantages of reducing the amount of work you do, increasing your
influence (you now have minions) and driving your productivity
through the roof (ten monkeys type ten times faster than just one
monkey; it will still be gibberish, but who cares – in fact, buy them
dictation software while you're at it).

Dedicate a group to the definition of the process. Make this group's
conditions even cushier than quality assurance. By the way, you have
the perfect individuals for this team: They are currently in the quality
assurance team. As soon as they move to their new job, make them
aware that if you can move them to this position, you can move them
out, too. Also imply that everybody wants to be in the team and there
are quite a few good candidates amongst those who replaced them in
the quality assurance team. When they hear this, they will be
producing documents and ideas like crazy in order to prove that the
group is not under-resourced – who wants another half a dozen people
sharing their slice of the pie? They'll also do their best to produce a
byzantine process that will be so difficult to follow that all the minions
trying to follow it will look utterly incompetent, which will ensure that
those minions cannot be promoted to the process team. And since the
process team oversees the quality assurance team's processes, too,
they will manage to make even the quality assurance people look
incompetent. This can then start a lovely chain reaction where the
quality assurance will pick on the software developers and so on.

Lest you get accused of being some religious fanatic, you must allow
the project teams to tailor the process to their own needs. Whatever
you do, don't use this as an opportunity to voice your doubts about
people's capability to tailor the process. After all, you've empowered

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

9

them to control their development. Remember, the process is so big
that they cannot have a hope to acquire enough knowledge to tailor it.
Convince everyone that, before they can tailor the process, they must
know how to do it successfully in the first place. This will take them a
year or two, during which the process will have changed somehow. On
top of that, publish the process on-line using some kind of content
management system. This makes it look very slick, indeed. It also
means that anyone wanting to tailor the process documentation to
their own needs must first learn how to use the content management
system. If you pick a system with loads of features and get it from a
company that has another couple of fierce competitors, you can be
sure that the feature set will grow faster than any techie who also has
to manage a project could ever hope to cope with. Sooner or later,
they'll give up.

The size of the process brings us to the training issue. Can we expect
anyone to be able to cope with the process without any training?
Hopefully not. If they can, you've definitely got it wrong. Back to the
beginning, then.

Since this is an internally defined process, the training needs to be
delivered internally, too. And since the process evolves to meet the
organisation's needs, schedule regular refreshers.

Internally written and delivered courses have so many advantages:

• They are perfectly tailored for the organisation by the people
who know the organisation and its needs.

• They save money, because we don't pay anything to an external
provider.

• They work wonders for the career progression of the trainers,
especially if they were never trained in giving training before.3

• They are the perfect vehicle for the resident office comedians.
• If you get the right hotel (let's face it, in-house facilities are

never good enough for such important occasions), everybody will
have a good time and go back to work smiling. At a time when
the corporate entertainment budgets are being squeezed dry,
you should see it as your holy duty to bolster up the staff morale
– nobody else will do it for you. And more importantly, you'll

3 Try to avoid external "train the trainer" courses. They are such a distraction and
they play havoc with the morale of the process tailoring team, who may get the
notion that they are being less than honest in their endeavours.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

10

never be stuck for your week-end breaks, again – hotels are
very generous to clients who bring in big delegations during the
week.

Having sorted out the tailoring and training needs, you need to turn
your attention to the day-to-day running of the projects. Such a drag,
when done badly, I know, but it doesn't need to be. Convince your
organisation that most of their management problems come from
having large teams. Make the teams smaller in order to reduce the
management overheads. Nobody will complain. Staff will see that you
are working towards higher agility, and because smaller teams create
more management positions, it will enhance their career progression
prospects. Team leaders won't complain, because from running a
single team, they will be promoted to running several teams with
managers under them – suddenly, they are further up the hierarchy.
The higher management will not object, because the hierarchical
baobab tree underneath them will now be even bigger. For the benefit
of the oddbods who read too many books for their own good, convince
them that smaller teams encourage flatter management structures. If
they fail to get the joke, change the corporate vocabulary to use words
like 'support' instead of 'manage'. It will confuse the hell out of
everybody (is this 'support' as in 'work for' or 'support' as in
'manage'?), but will sound contemporary, liberal and touchy-feely, so
no one will dare whinge anymore.

So, what do smaller teams achieve? Apart from improving the morale
of the whole organisation (everybody now believes that they got
something for nothing), it also creates excellent scope for inter-team
and interdepartmental dependencies. You now have a whole new
playground where

• system architecture can be defined along team boundaries,
which will lead to a proliferation of components;

• feudal attitudes will make the documentation spread across
many servers, domains, cupboards, desks and waste bins –
creating an excuse for another workstream to rationalise the
documentation needs of the organisation;

• deeply held enmities will resurface, especially if the team
divisions accentuate role divisions4;

4 It is essential that splits run along the lines of 'analysts' team', 'designers' team',
'architecture team', 'developers' team' in order to create centres of excellence for
various disciplines. You can then create separate project teams and lend the people

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

11

• the opportunities for meetings, memos and management week-
ends multiply by ten-fold;

• the need for improved communication techniques (instant
messaging, desktop conferencing, electronic whiteboards and
other corporate toys) goes through the roof.

If the organisation is dead against a proliferation of small teams, all is
not lost. You can achieve a lot of dissent with only two or three teams.
First, devise a team structure along architectural divisions, making
sure that the teams are populated by proponents of competing
technologies. A Microsoft vs. Somebody else's solution split is a
strategy that never fails. Then, find developers who make a career out
of incompetence and failure. Plain failed developers are no good; those
who have built a successful career on a series of failed projects are the
ones you need. Failing to deliver anything working is not good enough
– they also need to be able to make sure nobody else around them
delivers, and still come up smelling of roses. Now, if you had only one
team that did that, this would look like your average failed project. But
if you have two or more teams who collaborate in the failure, it's a
different story. Remember, we have competing technologies here. We
also need to arrange things so that both technologies will be used in
the same system. This will ensure that there will be plenty of scope for
either architectural feature being able to encompass the functionality
of the other. In most organisations, the teams that control most of the
architecture control the projects, too. So, tell each team independently
that whoever gets its solution out first will call the shots. Now, they'll
nicely work against each other, to the point of sabotage (like changing
interfaces on the fly and then telling everyone about it in a thousand
page document so that they have no hope of finding out what's really
happened). If you set the goals small enough and iterate, there will be
many architectural features assigned to one technology or other,
haphazardly.

When your team rivalries reach maturity, it will be time to introduce
integrated management of projects. Don't consider projects in
isolation. They are all interrelated. When you have big team rivalries,
this allows the fighting to transcend project boundaries and to spread

from these centres of excellence to the project teams. Now, everyone's working for
at least two managers, and everyone also brings all the role rivalries with them, but
they then take the project rivalries back to their centres of excellence, as well. Soon,
nobody will be able to tell friend from foe. Yes, like chips, matrices go with
everything, even management.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

12

to all other projects, too. The more architectural features the projects
share, the more they will be affected by these fights. And since the
disputed territory is now bigger and sweeter for the rival teams, they
will fight even harder.

So, we managed to drive a wedge between groups and we fragmented
those groups further, too, so that there is plenty of enmity even within
groups. The last step is to ensure that all remaining vestiges of
solidarity are driven out of the organisation, even at individual level.
Your problem is that, having driven apart the various groups within the
organisation, you will have actually driven the members of those
groups even closer together. This is not acceptable. Small groups that
gel together really well can do a lot of damage to your plans. But how
do you turn them against each other? Enter peer reviews!

We are human. We are fallible. We can conquer that fallibility because
we are also a social being: We have colleagues who can help spot our
mistakes so that they can be corrected before they become problems.
At least, this is what you tell everyone. There are a few right ways of
doing peer reviews and, thankfully, there even more wrong ways of
doing them. Peer reviews can be a stressful affair – except when the
peers involved get on well, at which point they risk becoming
constructive. Now, here is the dilemma: If you have peer reviews
between groups and if the groups are already at the feuding stage,
there is little to be gained from a negative review, except to flame the
feud a little further. Good, but not good enough. On the other hand, if
you have the review within a group, they are quite likely to let each
other off lightly, so you've got nothing to show for the effort. How do
you resolve this? Enter review guidelines!

Everything we produce in the organisation should be the best we can
produce. Only if we strive for absolute excellence could we hope to
compete in today's cutthroat marketplace. Unless we achieve
excellence internally, we can never hope to achieve excellence with the
products and services that our customers will receive from us. So, you
must produce the most stringent quality guidelines possible for all the
deliverables within the organisation. The guidelines will be so stringent
that nobody could ever hope to get everything right. But that's ok.
Process improvement is a journey. We have our targets and we strive
to reach them. The peer reviews' goal is to point out the pitfalls on
that road towards perfection. It's ok to get it wrong, as long as we
know where we got it wrong, so that we can do better next time.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

13

Except, of course, it will still hurt when you tell someone that their
code or document or model scored four out of ten on the excellence
scale. And if it's one of their best friends who tells them this, it will
hurt even more. And just to make sure that the best friend doesn't go
easy on the victim, we will make another group also do a peer review
on the same deliverable and give them scope to get really agitated if
the same checklist produces different results.

The beauty of this is that, once someone receives a bad review, when
it is their turn to do a review, they are more likely to be negative
towards their former tormentor. Go through the cycle a few times and
see if there is anyone left on speaking terms in the organisation.

What should go in the review checklists?
For a start, a document not elaborated to the finest level of detail will
obviously be scored low – you can't build a system from insufficient
information. And one that goes into too much detail would be scored
low, too – we don't want to get into analysis paralysis.
You'd also expect everything to have been reviewed and approved by
all the departments involved with the production of related artefacts.
And since they are all fighting amongst themselves, there will be very
little chance of that approval being granted in a hurry.
Just for a laugh and added bitterness, you can introduce automated
tools that will go through the deliverables and produce a lot warnings
about anything from grammar to the use of goto in code. Remember
the old lint? You gave it a hundred lines of C code that you were really
proud of and it came back with ten thousand warnings. That's about
the level you should aim for.

CMM Level 4 – Managing the unmanageable
Metrics are a matter of life and death for any organisation. They are an
objective and qualitative way of indicating where we are and where we
are heading and a way of helping us decide whether this is the
direction that we really want to be heading. At least, they could be, if
we let them, which we naturally won't.

One thing most people fail to understand about metrics is that they
are numbers. If they did, their lives would be easier and ours more
difficult. So, maybe it is a good thing that they don't. This point about
numbers is important, because it shapes our attitudes about metrics in
particular and statistics in general. Invariably, we either imbue them

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

14

with some kind of mystical power over reality5 or we completely ignore
their meaning because they look just too obscure. These two effects
are the ones we are going to exploit. We are going to create metrics
that are easy to collect, so nobody can complain that they take too
much time; we will ensure that they become the main source of
information about what is going on and we will destroy their credibility
– in that order.

The first step is to pick your statistics. They must be easy to collect so
that nobody can complain about the excessive administrative burden
that they place on the development staff, but they must also be able
to produce a lot more figures with still not much effort. Figures like the
number of lines of code produced are perfect for this purpose. Think
about it: All you need to capture is the number of lines someone
produces in a unit of time, be it program code or user guides. You are
of course using configuration management tools, so, it is relatively
easy to track these figures when people check files out and check
them back in. You can then cut them any way you want – LOCs per
team per week, LOCs per project, LOCs per iteration per person... It's
a statistics fest. It's the equivalent of the all-you-can-eat deal at the
pizza joint – you've had enough, but you'll still have another pie chart,
then another one and yet another one; it's all free anyway, so who
cares.

The second step is to convince the organisational stakeholders that
these figures are the solid facts about your projects and that they
should be believed above all else. After all, people always lie about the
amount of work they are putting in and about their productivity. If we
can obtain subjective figures, that are independently collected and
universally available, we will know the Truth about the projects. Now,
tie all this to statistics available for productivity in other organisations
and other industry sectors. Show how your figures compare with theirs
and show how you can make the figures even better. Suddenly, you
have their attention.

The final step is to destroy all credibility about these figures – at least,
amongst the development staff. If you collected the figures in a
pseudo-scientific fashion in the first place, you will have no trouble
with this. For instance, you could write the scripts to count the lines of

5 Anyone who's watched a cricket match on television knows that the statistics about
the game, players, weather and other trivia takes more screen estate than the actual
game, players, weather and other trivia do.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

15

code in a shoddy way, so that it counts everything, including
comments and line feeds. Software people are already suspicious of
metrics anyway. Given the evidence in front of them, they will be
convinced that it's all a façade and that it doesn't matter what the
metrics are. But since the management now view these as the gospel
truth, the management will have to be appeased. In this case, the
development staff, all the way from the most junior to the CTO will
make their utmost to lie with the figures and make them look as good
as possible – especially if their rewards are tied to it. (I mean, who's
going to get hurt if I have another few hundred lines of comments in
my code? It's just some nonsense figure anyway. While I'm here, I
might as well increase the spacing between my functions – makes
them more readable.)

There you have it, then. Your developers are now spending their lives
producing dross and getting rewarded for it, while the people holding
the purse strings are seeing continuous improvement. Everybody's
happy.

Now, we are collecting our metrics and we are feeding a bunch of guys
apparently doing quality assurance, whatever that may mean to them.
Why not combine the two? Why not, indeed? After all, this will give us
quality management for free.

All we have to do is combine the metrics that we collect with the
metrics that the quality assurance guys collect. So, we can have defect
rates against productivity. We can also have all sorts of defects figures
against projects, teams and individuals. Remember that we are aiming
for zero defects – that's Six Sigma, if you want to impress your peers6.
We will not get there until we know how badly everyone is doing. So,
collect as many defect metrics as you can. That's quality management.

Of course, quality is not just about the product. It's also about how
you produce things. One school of thought claims that if you get your
process right, the results will be right, too. So, if they stick to the
process we have configured so far... Perish the thought!

6 If you like name-dropping like this, it is worth choosing busy moments so that they
can't ask you to explain it in depth. It will leave the impression of a really
knowledgeable person in their minds without you having to do much work to prove
it.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

16

When it comes to managing adherence to the process, metrics lift their
blessed ugly little heads again, clamouring for attention. You see, you
can actually collect metrics on process adherence.

How many change requests have been raised last month?
~34~.
And how many changes were there to the code base during the same
month?
~83~.
What? We are making unauthorised changes? This has to stop!

How many lines of code do we have?
~A couple of million.~
How many use cases?
~Ten.~
What? So, we've got two hundred thousand lines of code per use case?
Haven't you read section 28 of the manual about the traceability
discipline?
[At this point, you have them by the metaphoricals. The developers,
having delivered a thousand line of code daily for the last six months,
cannot possibly admit to be producing mostly empty source code. The
only way out is to admit that they hadn't been following the process to
the letter.]

How many features have we delivered last month?
~Two.~
Two? Two? At this rate, we'll have delivered it all sometime during the
next decade!
[Your metrics will wisely omit the amount of time people spend
collecting the metrics and following the process. Besides, the
developers have been inflating their productivity figures so much –
since you told them it's all nonsense to keep the accountants happy,
anyway – that nobody's going to believe they are spending a lot of
time doing the process instead of doing real work.]

Now you have the attention of the development staff. They are failing
publicly. And they are failing because they haven't been following the
process, apparently. If they don't do everything in their power to stick
to the process from now on (or at least, give the impression of sticking
to it), they are ripe for sacking, anyway. If the recruitment policy has
been favouring the jobsworths who will do what they are told (you

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

17

have done your work there, haven't you?), you need do not much
more to convince everyone that what you say goes.

Like the man who markets the Wonder Millennium Potato Peelers
outside the Lime Street station would say, "But that's not all you're
getting for your money." Because metrics are the best fun you can
have with a bunch of consenting (ok, only barely, but still consenting)
adults without breaking the law. By this stage, the consenting adults
aren't so sure, of course, but they are still tagging along. Not tagging
along would imply that they haven't bought into the process, which
would imply that they aren't following it, which would imply that
everything's their fault. They are being carried along and they know
that they'll fall and get hurt very badly if they stop running. So, they'll
keep on running. Trust me on this. Now for the fun part, combine peer
reviews and metrics. Simmer gently.

Think about it. Your stakeholders are constantly after better ways of
measuring the performance of their suppliers – in this case, the
software folk. They are getting wind that this lines-of-code business
isn't all it's cracked up to be and the figures aren't all that reliable. But
then, you breeze into the boardroom with a folder full of figures from
the peer reviews. We are auditing ourselves now, and just to prove
that we aren't pulling our punches, look at these figures: They are all
below average. But that's ok, because we are on a journey. It will get
better. And just to make sure that it gets better, we will introduce
performance related bonuses that are tied to these figures. Naturally,
we can't have an open-ended bonus pot – that would be mad. So, we
decided to have a fixed bonus pool to be shared amongst the staff
according to their performance figures. If Jack does better than Jill,
Jack gets paid better than Jill. See them fight up the hill.

CMM Level 5 – Infra-optimisation
The journey is nearly over. By this point, the staff should be so
browbeaten that they will consent to anything. They would even be
prepared to do some real work for a bit of light relief. So, when you
talk about optimisation and how it will make their lives better, they'll
all sit up and beg.

If we want to reach Level 0, of course, we could hardly afford to
optimise the process for good. What we aim for is something well
below optimal. Sub-optimal wouldn't do. It has to be infra-optimal.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

18

What is infra-optimal?
To have an infra-optimal process, things have to be so bad that
everybody (including the tea boy) should believe that things could be
better, much better. Nothing new with that, of course, so we have an
additional criterion: Things must be so bad that changing anything
would make things even worse, not better. So, even if everybody's
unhappy with the situation, nobody can make things better, allowing
you to claim everything's optimal without anyone being able to
challenge the claim.
This sounds like a paradox. How can it be as bad as it can get and still
have room to get worse? Not so difficult, actually. Look at the
following curve.

1

23

It has a minimum and a maximum, but it also has other local minima
and maxima. If you gave this to a fool and asked him where the most
sub-optimal point was, he would show you the obvious minima: 2 or,
maybe, 3. But think about it: When you're at the point where things
cannot get any worse, they can get only better. Sooner or later,
somebody will catch on and start on some improvement programme
that will show positive results straightaway. Once they get the
improvement bug, organisations can never shake it off and carry on
improving things. Even when they get stuck in temporary ruts, like
one of the local minima, they look at their past history of
improvements, take heart and carry on. That's not quite what we
want, is it? We want them to believe that things are as good as they

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

19

can be, even though things aren't anywhere near as good as they
could be.

So, the wise fool would have found a very low local maximum with
steep drops either side. Say, 1. That way, if you move in either
direction, things get even less optimal, which discourages everyone
from trying out anything. Instead, they cluster on their tiny little peak
of mediocrity, always dissatisfied, but also afraid to fall off. This
combination of sub-optimisation and the threat of worse to come is
collectively termed infra-optimisation.

There are many techniques for keeping people in their place. Here, we
will concentrate on the corporate techniques because they are legal
and much more effective than the corporeal ones. One such technique
is making defect prevention everyone's business.

If somebody finds a defect, they should document it. This is hurdle
one. If you want the brownie points, you have to spend ages to
document the defect first. Could you be bothered? I didn't think so,
either.

Having documented it, the most efficient method to deal with the
defect is to try to fix it yourself. This is hurdle two. It stands to reason:
If you remove bureaucracy from defect prevention, it will work more
smoothly. But, since we are all responsible for our work and since the
configuration management system we have in place tracks every tiny
move we make, would anyone dare? Anyway, we replaced all the staff
with jobsworths, having we? Would they lift a finger to fix someone
else's defect? No, because everybody hates everybody by now, if you
did your job well.

Having found the defect, they should identify source causes. The best
way to do this is by committee. Committees are always more heartless
than individuals when it comes to apportioning blame in generous
doses7. So, start a weekly defect prevention meeting, where all the
defects are aired and the responsible parties chastised. Within this sort
of environment, everyone will try to keep their defects to themselves
and will try to identify those of the others to the best of their ability.
Fingerpointing is now the favourite sport of the staff.

7 This is because committees cannot be blamed for things, whereas individuals can. I
know people who would call this mob mentality, but I won't.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

20

In an environment like this, it is relatively easy to introduce practices
that encourage more defects. For instance, you could ask everyone to
comment their code to excess, in order to prevent misunderstandings.
When the comments start to take over from code, the error rate will
shoot up, too. The only way to prevent these defects is to improve the
quantity of comments, of course. And so on.

The ideal defects are those that cause most fingers to point, but leave
the real source of the problem unidentified. That way, everyone has
the opportunity to blame somebody else and also the opportunity to
go paranoid with the thought that the balance of power may change
any time, leaving all fingers pointing at them.

At this point, the quality management team can become the defect
prevention team, too. But having a central team on the job is a little
too draconian, and not very efficient. So, there should be a defect
prevention commissar (well, call them tsars, if you want; this seems to
be more socially acceptable these days) in every team. In fact, let's
have a defect prevention tsar for the company, who assigns
commissars in every team. How much more Kafkaesque can we get?
The team members should take turns to sit in the commissar's seat, in
order, apparently, to appreciate the importance of quality and to share
the heavy burden. The real reason, of course, is to give everyone a
chance to be hated by everyone else in the team.

Identifying the defects is not enough. We should also revise our
process every time we discover defects. That's our excuse to make the
process even bigger and more complex, but who cares?

Our final technique is the introduction of measurements to defect
prevention activities. If defect prevention is good, the more of it that
teams do, the better. Measure how much defect prevention teams are
doing and reward them for this activity. Soon, everybody will be busy
with defect prevention, defect hiding and defect metrics collection.
They may not have time to do anything else, but they will be very
busy and, on paper at least, very successful.

This is the end of the journey, where we delivered the whole
organisation onto the hamster wheel of continuous process

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

21

improvement and defect prevention. Now, I know hamsters make
lousy pets because they sleep all the time, they get naughty and bite
your finger if you pet them too much and they don't live long. But look
at their faces when they are running on that wheel. They could almost
be happy. And if they don't like it, why are they on that wheel all the
time?8 So, how could you deny your organisation that once in a
lifetime opportunity to get on the wheel of change?9

Finally
Yes, there you have it.
You thought it would be easy, didn't you?
In fact, it's a lot more work to be a successful failure than most would
believe.
Should that stop us? Of course not!

This is the bit where you are probably expecting, "Aah, but there is a
better way. If you do this and that, your processes will flow smoothly
and you will achieve CMM Level 17." Be prepared to be disappointed –
or should that be relieved? Because it's not going to happen. Even if it
weren't just too corny an ending (which it is), it still would have been
wasted effort because just about everybody who is anybody has
already written a book or six about it.

Instead, you might like to consider this.
Suppose you managed to take an organisation to CMM Level 0. What
next? Well, you've lied, you've cheated, you've manipulated large
numbers of people as if they were mere pawns in some game, you
have no conscience, feel no remorse – and, since you haven't been
hung, drawn and quartered for your efforts, you've turned out to be
very good at all this, unlike the majority of the population. Tell us:
Have you ever considered a career in politics?

8 Maybe because they aren't smart enough to get off it once it gets going. And they
get back on it in the first place, because they are too stupid to remember what
happened the last time they did that.
9 Don’t worry. They will bite. Because they don’t remember what happened last time
they took the once in a lifetime opportunity to get on the wheel of change.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

22

Acknowledgement
It turns out that there is a similar paper entitled “The Capability Im-
Maturity Model (CIMM)” by a Capt. Tom Schorsch of U.S. Air Force,
which has been around for a few years (the paper, that is. The USAF
must have been around longer than a few years, I’m sure.). That
paper was in turn based on Finkelstein’s “A Software Process
Immaturity Model”, from way back in ‘92.

This paper (if you can call it a paper), on the other hand, is based on
nothing but the firm conviction that life can get a lot nastier than it
already is if we carry on believing that processes are about bits of
paper and not about people.

Copyright 2003, Appropriate Process Group

This is, of course, meant to be humorous. Tell us if you do or don’t find it funny and
why, but not if you are mad enough to take it seriously.

23

	Abstract
	Copyright Note
	Sensible Note
	Process Configuration for CMM Level 0
	CMM Level 2 – Repeating the unrepeatable
	CMM Level 3 – Defining the indefinable
	CMM Level 4 – Managing the unmanageable
	CMM Level 5 – Infra-optimisation
	Finally
	Acknowledgement

